This notebook shows how to load email (.eml
) or Microsoft Outlook
(.msg
) files.
Please see this guide for more instructions on setting up Unstructured locally, including setting up required system dependencies.
Using Unstructured
%pip install --upgrade --quiet unstructured
from langchain_community.document_loaders import UnstructuredEmailLoader
loader = UnstructuredEmailLoader("./example_data/fake-email.eml")
data = loader.load()
data
API Reference:UnstructuredEmailLoader
[Document(page_content='This is a test email to use for unit tests.\n\nImportant points:\n\nRoses are red\n\nViolets are blue', metadata={'source': './example_data/fake-email.eml'})]
Retain Elements
Under the hood, Unstructured creates different "elements" for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements"
.
loader = UnstructuredEmailLoader("example_data/fake-email.eml", mode="elements")
data = loader.load()
data[0]
Document(page_content='This is a test email to use for unit tests.', metadata={'source': 'example_data/fake-email.eml', 'file_directory': 'example_data', 'filename': 'fake-email.eml', 'last_modified': '2022-12-16T17:04:16-05:00', 'sent_from': ['Matthew Robinson <mrobinson@unstructured.io>'], 'sent_to': ['Matthew Robinson <mrobinson@unstructured.io>'], 'subject': 'Test Email', 'languages': ['eng'], 'filetype': 'message/rfc822', 'category': 'NarrativeText'})
Processing Attachments
You can process attachments with UnstructuredEmailLoader
by setting process_attachments=True
in the constructor. By default, attachments will be partitioned using the partition
function from unstructured
. You can use a different partitioning function by passing the function to the attachment_partitioner
kwarg.
loader = UnstructuredEmailLoader(
"example_data/fake-email.eml",
mode="elements",
process_attachments=True,
)
data = loader.load()
data[0]
Document(page_content='This is a test email to use for unit tests.', metadata={'source': 'example_data/fake-email.eml', 'file_directory': 'example_data', 'filename': 'fake-email.eml', 'last_modified': '2022-12-16T17:04:16-05:00', 'sent_from': ['Matthew Robinson <mrobinson@unstructured.io>'], 'sent_to': ['Matthew Robinson <mrobinson@unstructured.io>'], 'subject': 'Test Email', 'languages': ['eng'], 'filetype': 'message/rfc822', 'category': 'NarrativeText'})
Using OutlookMessageLoader
%pip install --upgrade --quiet extract_msg
from langchain_community.document_loaders import OutlookMessageLoader
loader = OutlookMessageLoader("example_data/fake-email.msg")
data = loader.load()
data[0]
API Reference:OutlookMessageLoader
Document(page_content='This is a test email to experiment with the MS Outlook MSG Extractor\r\n\r\n\r\n-- \r\n\r\n\r\nKind regards\r\n\r\n\r\n\r\n\r\nBrian Zhou\r\n\r\n', metadata={'source': 'example_data/fake-email.msg', 'subject': 'Test for TIF files', 'sender': 'Brian Zhou <brizhou@gmail.com>', 'date': datetime.datetime(2013, 11, 18, 0, 26, 24, tzinfo=zoneinfo.ZoneInfo(key='America/Los_Angeles'))})
Related
- Document loader conceptual guide
- Document loader how-to guides